hellpepitosKingspatriots

 

 


Hooligans

GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
DG: Maxime Lord | Morale : 50 | Moyenne d'Équipe : 67
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Sam Gagner0XXX100.00512960336769667465818262937458051730
2Brad Richardson0XXX100.00593063406673527090778179687563050720
3Zach Aston-Reese0X100.00863559406959647142788275664053037690
4Marcus Sorensen0X100.00722768384657797640788258645346050690
5Drake Caggiula0X100.00822860364366637237788261644146050680
6Martin Frk0X100.00782567356944787031798150705745050670
7Michael Amadio0X100.00471367386645866868778149664742047670
8Dryden Hunt0X100.00833064405650846932788050664551047670
9Matt Luff0X100.00473070376250817034728252673647046660
10Carl Grundstrom (R)0X100.00621673476070815931677766674536050650
11Mason Appleton (R)0X100.00712670446036806831798249673441050640
12Jonny Brodzinski0X100.00782469437244596438707951714040050620
13Martin Necas0XXX100.00332178545445825733667462683738047600
14Roman Polak0X100.00833351519367647822817476437957044730
15Maxime Lajoie (R)0X100.00502066444868788230817768663744049710
16Tim Heed0X100.00471267435054768430857745735335047700
17Brett Kulak0X100.00762964455858808329817645654950050700
18Sean Walker0X100.00652470455756788330827645663548050690
19Jimmy Schuldt0X100.00263083496974846731726957683256050680
20Paul LaDue0X100.00822468466849778230797645664043050680
21Matt Roy0X100.00602971536562817630767464673444050680
22Philippe Myers (R)0X100.00663080537956797230747249674045050660
Rayé
1Nico Sturm0X100.00322484677358835631647069683944050600
2Vitaly Abramov (R)0X100.00272483613365845631647070683740050590
3Zack MacEwen (R)0X100.00373677707431835631657366683749050580
4Blake Lizotte0X100.00262282683051845631647070683043050560
5Nicolas Aube-Kubel (R)0X100.00623187675125825631657163684752050560
6Justin Kloos0X100.00331880674032835631647069683945050530
MOYENNE D'ÉQUIPE100.0058267148605477693674765967454604966
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Mackenzie Blackwood (R)100.0085938788869191889159805362050820
2Ken Appleby100.0080918177818088839351605164050780
3Cal Petersen (R)100.0082908275829188877754714053050770
Rayé
MOYENNE D'ÉQUIPE100.008291838083878986875570486005079
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Blake LizotteHooligans (HOO)LW211997-12-13No172 Lbs170 CMNoNoNo1Pro & Farm1,491,667$1,491,667$0$0$NoLien
Brad RichardsonHooligans (HOO)C/LW/RW341985-02-04No190 Lbs183 CMNoNoNo1Pro & Farm650,000$650,000$0$0$NoLien / Lien NHL
Brett KulakHooligans (HOO)D251994-01-06No187 Lbs188 CMNoNoNo1Pro & Farm900,000$900,000$0$0$NoLien
Cal PetersenHooligans (HOO)G241994-10-19Yes185 Lbs185 CMNoNoNo1Pro & Farm925,000$925,000$0$0$NoLien
Carl GrundstromHooligans (HOO)RW211997-12-01Yes201 Lbs183 CMNoNoNo1Pro & Farm925,000$925,000$0$0$NoLien
Drake CaggiulaHooligans (HOO)RW251994-06-20No176 Lbs178 CMNoNoNo1Pro & Farm1,500,000$1,500,000$0$0$NoLien / Lien NHL
Dryden HuntHooligans (HOO)LW231995-11-24No191 Lbs183 CMNoNoNo2Pro & Farm715,000$715,000$0$0$No715,000$Lien
Jimmy SchuldtHooligans (HOO)D241995-05-11No205 Lbs185 CMNoNoNo1Pro & Farm925,000$925,000$0$0$NoLien
Jonny BrodzinskiHooligans (HOO)C261993-06-19No208 Lbs185 CMNoNoNo1Pro & Farm650,000$650,000$0$0$NoLien / Lien NHL
Justin KloosHooligans (HOO)C251993-11-30No175 Lbs175 CMNoNoNo0Pro & Farm0$0$NoLien
Ken ApplebyHooligans (HOO)G241995-04-10No210 Lbs193 CMNoNoNo0Pro & Farm0$0$NoLien
Mackenzie BlackwoodHooligans (HOO)G221996-12-09Yes225 Lbs193 CMNoNoNo1Pro & Farm913,333$913,333$0$0$NoLien
Marcus SorensenHooligans (HOO)RW271992-04-07No175 Lbs180 CMNoNoNo1Pro & Farm700,000$700,000$0$0$NoLien
Martin FrkHooligans (HOO)RW251993-10-05No205 Lbs185 CMNoNoNo1Pro & Farm650,000$650,000$0$0$NoLien
Martin NecasHooligans (HOO)C/LW/RW201999-01-15No189 Lbs188 CMNoNoNo3Pro & Farm1,400,833$1,400,833$0$0$No1,400,833$1,400,833$Lien
Mason AppletonHooligans (HOO)RW231996-01-15Yes193 Lbs188 CMNoNoNo1Pro & Farm758,333$758,333$0$0$NoLien
Matt LuffHooligans (HOO)RW221997-05-05No196 Lbs188 CMNoNoNo1Pro & Farm677,777$677,777$0$0$NoLien
Matt RoyHooligans (HOO)D241995-03-01No200 Lbs185 CMNoNoNo1Pro & Farm650,000$650,000$0$0$NoLien
Maxime LajoieHooligans (HOO)D211997-11-05Yes183 Lbs185 CMNoNoNo1Pro & Farm780,000$780,000$0$0$NoLien
Michael AmadioHooligans (HOO)C231996-05-13No204 Lbs185 CMNoNoNo2Pro & Farm700,000$700,000$0$0$No700,000$Lien
Nico SturmHooligans (HOO)LW241995-05-03No207 Lbs191 CMNoNoNo1Pro & Farm925,000$925,000$0$0$NoLien
Nicolas Aube-KubelHooligans (HOO)RW231996-05-10Yes187 Lbs180 CMNoNoNo1Pro & Farm871,666$871,666$0$0$NoLien
Paul LaDueHooligans (HOO)D271992-09-06No200 Lbs188 CMNoNoNo1Pro & Farm825,000$825,000$0$0$NoLien / Lien NHL
Philippe MyersHooligans (HOO)D221997-01-25Yes210 Lbs196 CMNoNoNo1Pro & Farm678,889$678,889$0$0$NoLien
Roman PolakHooligans (HOO)D331986-04-28No240 Lbs188 CMNoNoNo1Pro & Farm650,000$650,000$0$0$NoLien / Lien NHL
Sam GagnerHooligans (HOO)C/LW/RW301989-08-10No200 Lbs180 CMNoNoNo1Pro & Farm650,000$650,000$0$0$NoLien / Lien NHL
Sean WalkerHooligans (HOO)D241994-11-13No196 Lbs180 CMNoNoNo1Pro & Farm745,000$745,000$0$0$NoLien
Tim HeedHooligans (HOO)D281991-01-27No180 Lbs180 CMNoNoNo0Pro & Farm0$0$NoLien
Vitaly AbramovHooligans (HOO)RW211998-05-08Yes171 Lbs175 CMNoNoNo1Pro & Farm880,000$880,000$0$0$NoLien
Zach Aston-ReeseHooligans (HOO)C251994-08-10No204 Lbs183 CMNoNoNo2Pro & Farm1,000,000$1,000,000$0$0$No1,000,000$Lien
Zack MacEwenHooligans (HOO)LW231996-07-08Yes205 Lbs191 CMNoNoNo1Pro & Farm995,833$995,833$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
3124.48196 Lbs185 CM1.06778,495$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Sam GagnerMarcus Sorensen40122
2Drake Caggiula30122
3Martin Frk20122
4Sam GagnerMatt Luff10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
140122
2Maxime Lajoie30122
3Brett Kulak20122
4Jimmy SchuldtPaul LaDue10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Sam GagnerMarcus Sorensen60122
2Drake Caggiula40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Maxime Lajoie40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Sam Gagner60122
2Marcus Sorensen40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Maxime Lajoie40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Sam Gagner6012260122
240122Maxime Lajoie40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Sam Gagner60122
2Marcus Sorensen40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Maxime Lajoie40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Sam GagnerMarcus Sorensen
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Sam GagnerMarcus Sorensen
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Carl Grundstrom, Mason Appleton, Jonny BrodzinskiCarl Grundstrom, Mason AppletonJonny Brodzinski
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Matt Roy, Philippe Myers, Matt RoyPhilippe Myers,
Tirs de Pénalité
Sam Gagner, , , Marcus Sorensen, Drake Caggiula
Gardien
#1 : Mackenzie Blackwood, #2 : , #3 : Cal Petersen


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
00N/A0000000000
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 Matchs
WLOTWOTL SOWSOL
000000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
000.00%000.00%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
00000000
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
000.00%000.00%000.00%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
000000


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance0.00%0.00%
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
42 0 - 0.00%0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 2,413,333$ 2,100,528$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
20168446220732444219225042297021122548616842171505212188106829244277412160413813416111260683388985451221481993918532756222.55%3235682.66%141033165662.38%987159162.04%783121764.34%2097138617146651277661
201684195301326255252342132101124116102144263200202139150-11382554146694379888552460777797880393014111283716192494819.28%3117476.21%9497162630.57%512204725.01%294104028.27%1673110523006461113502
201784165205506136447-311429220440377232-155427300110359215-156321362423782432485111180555558263558248593351614742824214.89%2624084.73%7698136651.10%820158051.90%526117244.88%170298520017211391691
20178438310453333031317422312012221631333042151903311167180-137633053886822118110957276992293689537246191241915103078126.38%2094677.99%18814178345.65%606148340.86%566121646.55%1942131219356381205591
201882244803421473374994115200222026117388419280120121220111484738241297222001451238302911659109402529221056130115222716122.51%54914573.59%251112178462.33%1211197461.35%880141562.19%1895123318526531204603
201882393500422503298205412612000122821181644113230041022118041785038281331232181781052326612211076961243033111553812463238024.77%2495478.31%7833189843.89%734174542.06%616137144.93%1904131519006101144558
Total Saison Régulière50018224102024112221391876263250115940101081311538443092506714701014399861032-463642139362057591218785703620441593554735190516523416129594745509224170737421.91%190341578.19%8049871011349.31%48701042046.74%3665743149.32%11216733811703393573353609
Séries
201640400000322-192020000037-420200000015-15033600030077292123416958146410220.00%7442.86%0166425.00%2510424.04%94918.37%6739128325725
201640400000510-52020000025-32020000035-2058130001409420472341505715702129.52%50100.00%06876.90%189119.78%64613.04%6639129335123
20171697000004754-78620000028208835000001934-151847801270019121335461821891631257421386238862427.91%43881.40%016139840.45%12636134.90%8322437.05%359243411130223105
2018514000001827-9211000001210230300000617-112183452009630154674339521871948426311.54%371267.57%04510742.06%8314955.70%447757.14%10361132457435
2018514000001426-122110000079-230300000717-10214193300526114047444542497933632214.55%11554.55%0188720.69%3412028.33%147418.92%8555158406628
Total Séries3411230000087139-521688000005251118315000003588-53228714423100332426410113453442932913604782425191653219.39%1032971.84%024674333.11%28682534.67%15647033.19%683439961281472218