hellpepitosKingspatriots

 

 


Hooligans

GP: 6 | W: 2 | L: 1 | OTL: 3 | P: 7
GF: 17 | GA: 61 | PP%: 21.88% | PK%: 77.78%
DG: Maxime Lord | Morale : 50 | Moyenne d'Équipe : 68
Prochain matchs #47 vs Hybrides
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Alexander Kerfoot0XX100.00422059324168777571828457643941047710
2Alex Iafallo0XX100.00572470365477797139808171734141050710
3Adrian Kempe0XX100.00672353356566787174808261785645050710
4Frank Vatrano0XX100.00782352325865727744788456734541047700
5Zach Aston-Reese0X100.00863559406959647142788275664053050690
6Marcus Sorensen0X100.00722768384657797640788258645346050690
7Drake Caggiula0X100.00822860364366637237788261644146050680
8Michael Amadio0X100.00471367386645866868778149664742050670
9Sam Steel (R)0X100.00381769414770816256728067714051050670
10Dryden Hunt0X100.00833064405650846932788050664551050670
11Mathieu Joseph (R)0X100.00822858385551787336798255664043050670
12Matt Luff0X100.00473070376250817034728252673647050660
13Carl Grundstrom (R)0X100.00621673476070815931677766674536050650
14Mason Appleton (R)0X100.00712670446036806831798249673441050640
15Zack MacEwen (R)0X100.00373677707431835631657366683749050580
16Nicolas Aube-Kubel (R)0X100.00623187675125825631657163684752050560
17Travis Sanheim0X100.00482367445367898429857863654448050730
18Christian Wolanin0X100.00463074435661808430837851663646050710
19Brett Kulak0X100.00762964455858808329817645654950050700
20Jimmy Schuldt0X100.00263083496974846731726957683256050680
21Matt Roy0X100.00602971536562817630767464673444050680
22Philippe Myers (R)0X100.00663080537956797230747249674045050660
Rayé
1Martin Frk0X100.00782567356944787031798150705745050670
2Jonny Brodzinski0X100.00782469437244596438707951714040050620
3Nico Sturm0X100.00322484677358835631647069683944050600
4Justin Kloos0X100.00331880674032835631647069683945050530
5Roman Polak0X100.00833351519367647822817476437957047730
6Tim Heed0X100.00471267435054768430857745735335047700
7Paul LaDue0X100.00822468466849778230797645664043050680
MOYENNE D'ÉQUIPE100.0061256845605678713876785867444605067
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Mackenzie Blackwood (R)100.0085938788869191889159805362050820
2Cal Petersen (R)100.0082908275829188877754714053050770
Rayé
1Ken Appleby100.0080918177818088839351605164050780
MOYENNE D'ÉQUIPE100.008291838083878986875570486005079
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Frank VatranoHooligans (HOO)C/LW54483201531461028.57%28917.99213623000140050.00%620011.7800000101
2Alexander KerfootHooligans (HOO)C/LW5347200582031015.00%09519.04033323000081161.76%6821001.4701000110
3Adrian KempeHooligans (HOO)C/LW5235-68074183611.11%310821.7722410260000150064.29%1440000.9201000000
4Marcus SorensenHooligans (HOO)RW5235-600176154713.33%28617.37134827000000060.00%531001.1500000010
5Alex IafalloHooligans (HOO)C/LW5134-7401091041010.00%1211122.351232270000170035.77%12322000.7201000000
6Drake CaggiulaHooligans (HOO)RW5134300208185125.56%38216.421126230000010100.00%112000.9700000010
7Zach Aston-ReeseHooligans (HOO)C61232401012104310.00%4589.8100000000000030.77%2611001.0200000001
8Mathieu JosephHooligans (HOO)RW52132605484525.00%05811.690000000000010.00%030001.0300000100
9Christian WolaninHooligans (HOO)D6112-100035102110.00%614023.44011330000014000.00%093000.2800000000
10Brett KulakHooligans (HOO)D5022700446530.00%410921.81000219000013000.00%010000.3700000000
11Dryden HuntHooligans (HOO)LW6022-9201038250.00%37312.2200000000000033.33%313000.5500000000
12Jimmy SchuldtHooligans (HOO)D5011800065430.00%210621.39011219000113000.00%002000.1900000000
13Michael AmadioHooligans (HOO)C5011120431340.00%1408.0600000000000043.48%2300000.5000000000
14Matt LuffHooligans (HOO)RW5011120101020.00%1397.930000000000000.00%000000.5000000000
15Travis SanheimHooligans (HOO)D5000-74071013520.00%2013627.32000730000214000.00%023000.0000000000
16Zack MacEwenHooligans (HOO)LW5000100133150.00%3397.930000000000000.00%130000.0000000000
17Carl GrundstromHooligans (HOO)RW5000-100100000.00%030.670000000000000.00%000000.0000000000
18Philippe MyersHooligans (HOO)D5000-300212110.00%16312.690000000000000.00%001000.0000000000
19Sam SteelHooligans (HOO)C5000-100010000.00%091.820000000003000.00%001000.0000000000
20Matt RoyHooligans (HOO)D5000-300035120.00%26412.990000100000000.00%002000.0000000000
21Mason AppletonHooligans (HOO)RW5000-200210000.00%1102.100000000007000.00%510000.0000000000
Stats d'équipe Total ou en Moyenne108173148-2534012494167579110.18%70152914.16714214925300041122244.00%2753522010.6303000332
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mackenzie BlackwoodHooligans (HOO)52030.8983.10310001615785000.667350000
Stats d'équipe Total ou en Moyenne52030.8983.10310001615785000.667350000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Adrian KempeHooligans (HOO)C/LW231996-09-13No201 Lbs188 CMNoNoNo2Avec RestrictionPro & Farm894,167$0$0$NoLien / Lien NHL
Alex IafalloHooligans (HOO)C/LW251993-12-21No188 Lbs183 CMNoNoNo1Avec RestrictionPro & Farm925,000$0$0$NoLien
Alexander KerfootHooligans (HOO)C/LW251994-08-11No175 Lbs178 CMNoNoNo1Avec RestrictionPro & Farm1,137,500$0$0$NoLien
Brett KulakHooligans (HOO)D251994-01-06No187 Lbs188 CMNoNoNo2Avec RestrictionPro & Farm900,000$0$0$NoLien
Cal PetersenHooligans (HOO)G241994-10-19Yes185 Lbs185 CMNoNoNo2Avec RestrictionPro & Farm925,000$0$0$NoLien
Carl GrundstromHooligans (HOO)RW211997-12-01Yes201 Lbs183 CMNoNoNo2Contrat d'EntréePro & Farm925,000$0$0$NoLien
Christian WolaninHooligans (HOO)D241995-03-17No185 Lbs188 CMNoNoNo1Avec RestrictionPro & Farm925,000$0$0$NoLien
Drake CaggiulaHooligans (HOO)RW251994-06-20No176 Lbs178 CMNoNoNo2Avec RestrictionPro & Farm1,500,000$0$0$NoLien / Lien NHL
Dryden HuntHooligans (HOO)LW231995-11-24No191 Lbs183 CMNoNoNo1Avec RestrictionPro & Farm925,000$0$0$NoLien
Frank VatranoHooligans (HOO)C/LW251994-03-14No201 Lbs175 CMNoNoNo1Avec RestrictionPro & Farm925,000$0$0$NoLien / Lien NHL
Jimmy SchuldtHooligans (HOO)D241995-05-11No205 Lbs185 CMNoNoNo2Avec RestrictionPro & Farm925,000$0$0$NoLien
Jonny BrodzinskiHooligans (HOO)C261993-06-19No208 Lbs185 CMNoNoNo2Avec RestrictionPro & Farm650,000$0$0$NoLien / Lien NHL
Justin KloosHooligans (HOO)C251993-11-30No175 Lbs175 CMNoNoNo1Avec RestrictionPro & Farm925,000$0$0$NoLien
Ken ApplebyHooligans (HOO)G241995-04-10No210 Lbs193 CMNoNoNo1Avec RestrictionPro & Farm635,000$0$0$NoLien
Mackenzie BlackwoodHooligans (HOO)G221996-12-09Yes225 Lbs193 CMNoNoNo2Contrat d'EntréePro & Farm913,333$0$0$NoLien
Marcus SorensenHooligans (HOO)RW271992-04-07No175 Lbs180 CMNoNoNo2Avec RestrictionPro & Farm700,000$0$0$NoLien
Martin FrkHooligans (HOO)RW251993-10-05No205 Lbs185 CMNoNoNo2Avec RestrictionPro & Farm650,000$0$0$NoLien
Mason AppletonHooligans (HOO)RW231996-01-15Yes193 Lbs188 CMNoNoNo2Avec RestrictionPro & Farm758,333$0$0$NoLien
Mathieu JosephHooligans (HOO)RW221997-02-09Yes190 Lbs185 CMNoNoNo2Contrat d'EntréePro & Farm910,833$0$0$NoLien
Matt LuffHooligans (HOO)RW221997-05-05No196 Lbs188 CMNoNoNo2Contrat d'EntréePro & Farm677,777$0$0$NoLien
Matt RoyHooligans (HOO)D241995-03-01No200 Lbs185 CMNoNoNo2Avec RestrictionPro & Farm650,000$0$0$NoLien
Michael AmadioHooligans (HOO)C231996-05-13No204 Lbs185 CMNoNoNo1Avec RestrictionPro & Farm925,000$0$0$NoLien
Nico SturmHooligans (HOO)LW241995-05-03No207 Lbs191 CMNoNoNo2Avec RestrictionPro & Farm925,000$0$0$NoLien
Nicolas Aube-KubelHooligans (HOO)RW231996-05-10Yes187 Lbs180 CMNoNoNo2Avec RestrictionPro & Farm871,666$0$0$NoLien
Paul LaDueHooligans (HOO)D271992-09-06No200 Lbs188 CMNoNoNo2Avec RestrictionPro & Farm825,000$0$0$NoLien / Lien NHL
Philippe MyersHooligans (HOO)D221997-01-25Yes210 Lbs196 CMNoNoNo2Contrat d'EntréePro & Farm678,889$0$0$NoLien
Roman PolakHooligans (HOO)D331986-04-28No240 Lbs188 CMNoNoNo2Sans RestrictionPro & Farm650,000$0$0$NoLien / Lien NHL
Sam SteelHooligans (HOO)C211998-02-03Yes186 Lbs180 CMNoNoNo2Contrat d'EntréePro & Farm863,333$0$0$NoLien
Tim HeedHooligans (HOO)D281991-01-27No180 Lbs180 CMNoNoNo1Avec RestrictionPro & Farm650,000$0$0$NoLien
Travis SanheimHooligans (HOO)D231996-03-29No181 Lbs191 CMNoNoNo1Avec RestrictionPro & Farm1,263,333$0$0$NoLien
Zach Aston-ReeseHooligans (HOO)C251994-08-10No204 Lbs183 CMNoNoNo1Avec RestrictionPro & Farm925,000$0$0$NoLien
Zack MacEwenHooligans (HOO)LW231996-07-08Yes205 Lbs191 CMNoNoNo2Avec RestrictionPro & Farm995,833$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
3224.25196 Lbs185 CM1.66873,437$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Adrian KempeAlex IafalloMarcus Sorensen40122
2Frank VatranoAlexander KerfootDrake Caggiula30122
3Dryden HuntZach Aston-ReeseMathieu Joseph20122
4Zack MacEwenMichael AmadioMatt Luff10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Travis SanheimChristian Wolanin40122
2Brett KulakJimmy Schuldt30122
3Matt RoyPhilippe Myers20122
4Travis SanheimChristian Wolanin10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Adrian KempeAlex IafalloMarcus Sorensen60122
2Frank VatranoAlexander KerfootDrake Caggiula40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Travis SanheimChristian Wolanin60122
2Brett KulakJimmy Schuldt40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Alex IafalloAdrian Kempe60122
2Alexander KerfootFrank Vatrano40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Travis SanheimChristian Wolanin60122
2Brett KulakJimmy Schuldt40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Alex Iafallo60122Travis SanheimChristian Wolanin60122
2Adrian Kempe40122Brett KulakJimmy Schuldt40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Alex IafalloAdrian Kempe60122
2Alexander KerfootFrank Vatrano40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Travis SanheimChristian Wolanin60122
2Brett KulakJimmy Schuldt40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Adrian KempeAlex IafalloMarcus SorensenTravis SanheimChristian Wolanin
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Adrian KempeAlex IafalloMarcus SorensenTravis SanheimChristian Wolanin
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Sam Steel, Carl Grundstrom, Mason AppletonSam Steel, Carl GrundstromMason Appleton
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Matt Roy, Philippe Myers, Brett KulakMatt RoyPhilippe Myers, Brett Kulak
Tirs de Pénalité
Alex Iafallo, Adrian Kempe, Alexander Kerfoot, Frank Vatrano, Zach Aston-Reese
Gardien
#1 : Mackenzie Blackwood, #2 : Cal Petersen


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Jardiniers21100000547-420000000000021100000547-4220.50051015005750404657635832010288225.00%5180.00%05312343.09%399839.80%4211835.59%12778150509344
2Requins21000100660210001006600000000000030.750610160057506046576355623124812216.67%60100.00%05312343.09%399839.80%4211835.59%12778150509344
3Royaux1000010034-1000000000001000010034-110.50036900575034465763531154236233.33%2150.00%05312343.09%399839.80%4211835.59%12778150509344
Total621002011761-4431000101910-131100100851-4370.5831731480057501684657635201763612632721.88%18477.78%05312343.09%399839.80%4211835.59%12778150509344
5Vagabond1000000134-11000000134-10000000000010.500358005750344657635311810276116.67%5260.00%05312343.09%399839.80%4211835.59%12778150509344
_Since Last GM Reset621002011761-4431000101910-131100100851-4370.5831731480057501684657635201763612632721.88%18477.78%05312343.09%399839.80%4211835.59%12778150509344
_Vs Conference521001011457-4331000101910-121100000547-4260.6001425390057501344657635170613210326519.23%16381.25%05312343.09%399839.80%4211835.59%12778150509344
_Vs Division2000000168-21000000134-11000000034-110.250611170057506846576356233145012325.00%7357.14%05312343.09%399839.80%4211835.59%12778150509344

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
67W1173148168201763612600
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
62102011761
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
3100101910
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
3110100851
Derniers 10 Matchs
WLOTWOTL SOWSOL
210201
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
32721.88%18477.78%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
46576355750
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
5312343.09%399839.80%4211835.59%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
12778150509344


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2019-10-061Hooligans0Jardiniers44LSommaire du Match
2 - 2019-10-078Hooligans3Royaux4LXSommaire du Match
4 - 2019-10-0915Requins4Hooligans3LXSommaire du Match
6 - 2019-10-1124Requins2Hooligans3WSommaire du Match
8 - 2019-10-1334Vagabond4Hooligans3LXXSommaire du Match
10 - 2019-10-1540Hooligans5Jardiniers3WSommaire du Match
12 - 2019-10-1747Hooligans-Hybrides-
14 - 2019-10-1956Caribou-Hooligans-
16 - 2019-10-2161Hooligans-Diabotins-
17 - 2019-10-2268Hooligans-Royaux-
19 - 2019-10-2474Royaux-Hooligans-
20 - 2019-10-2577Hooligans-Diabotins-
22 - 2019-10-2787Requins-Hooligans-
25 - 2019-10-3098Hooligans-Jardiniers-
27 - 2019-11-01104Requins-Hooligans-
29 - 2019-11-03113Barracuda-Hooligans-
30 - 2019-11-04118Hooligans-Benchwarmers-
32 - 2019-11-06125Hooligans-Royaux-
33 - 2019-11-07132Jardiniers-Hooligans-
35 - 2019-11-09140Hooligans-Royaux-
37 - 2019-11-11148Benchwarmers-Hooligans-
39 - 2019-11-13154Hooligans-Diabotins-
41 - 2019-11-15161Royaux-Hooligans-
43 - 2019-11-17173Pirates-Hooligans-
45 - 2019-11-19182Hooligans-Leftovers-
46 - 2019-11-20188Jardiniers-Hooligans-
48 - 2019-11-22194Hooligans-Jardiniers-
50 - 2019-11-24200Hooligans-Diabotins-
52 - 2019-11-26208Casse-Tete-Hooligans-
54 - 2019-11-28216Hooligans-Vagabond-
56 - 2019-11-30223Diabotins-Hooligans-
57 - 2019-12-01231Hooligans-Vagabond-
59 - 2019-12-03238Diabotins-Hooligans-
61 - 2019-12-05246Hybrides-Hooligans-
63 - 2019-12-07253Hooligans-Hybrides-
64 - 2019-12-08259Hooligans-Diabotins-
66 - 2019-12-10267Barracuda-Hooligans-
67 - 2019-12-11272Hooligans-Chevalier-
70 - 2019-12-14284Werewolves-Hooligans-
71 - 2019-12-15289Hooligans-Barracuda-
73 - 2019-12-17298Hooligans-Hybrides-
74 - 2019-12-18301Vagabond-Hooligans-
77 - 2019-12-21311Barracuda-Hooligans-
79 - 2019-12-23318Hooligans-Werewolves-
80 - 2019-12-24325Hooligans-Leftovers-
82 - 2019-12-26331Requins-Hooligans-
85 - 2019-12-29339Hooligans-Jardiniers-
86 - 2019-12-30345Chevalier-Hooligans-
88 - 2020-01-01353Hooligans-Casse-Tete-
89 - 2020-01-02359Vagabond-Hooligans-
91 - 2020-01-04370Werewolves-Hooligans-
96 - 2020-01-09384Leftovers-Hooligans-
97 - 2020-01-10392Hooligans-Casse-Tete-
99 - 2020-01-12399Royaux-Hooligans-
102 - 2020-01-15410Hooligans-Requins-
103 - 2020-01-16414Chevalier-Hooligans-
106 - 2020-01-19425Royaux-Hooligans-
107 - 2020-01-20426Hooligans-Caribou-
109 - 2020-01-22439Hooligans-Casse-Tete-
110 - 2020-01-23442Hooligans-Barracuda-
112 - 2020-01-25446Hooligans-Hybrides-
113 - 2020-01-26450Caribou-Hooligans-
116 - 2020-01-29462Hybrides-Hooligans-
118 - 2020-01-31471Hooligans-Requins-
119 - 2020-02-01476Hooligans-Jardiniers-
121 - 2020-02-03483Royaux-Hooligans-
122 - 2020-02-04492Barracuda-Hooligans-
125 - 2020-02-07499Hooligans-Benchwarmers-
128 - 2020-02-10508Benchwarmers-Hooligans-
131 - 2020-02-13520Casse-Tete-Hooligans-
134 - 2020-02-16531Pirates-Hooligans-
136 - 2020-02-18537Hooligans-Pirates-
137 - 2020-02-19540Hooligans-Royaux-
140 - 2020-02-22550Leftovers-Hooligans-
142 - 2020-02-24559Hooligans-Werewolves-
144 - 2020-02-26567Requins-Hooligans-
145 - 2020-02-27577Requins-Hooligans-
147 - 2020-02-29584Hooligans-Pirates-
150 - 2020-03-03592Chevalier-Hooligans-
152 - 2020-03-05601Caribou-Hooligans-
154 - 2020-03-07607Hooligans-Caribou-
158 - 2020-03-11617Caribou-Hooligans-
159 - 2020-03-12620Hooligans-Chevalier-
161 - 2020-03-14625Hooligans-Caribou-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
39 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
171,470$ 2,794,999$ 2,035,695$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
17,147$ 171,470$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 153 17,147$ 2,623,491$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
20168446220732444219225042297021122548616842171505212188106829244277412160413813416111260683388985451221481993918532756222.55%3235682.66%141033165662.38%987159162.04%783121764.34%2097138617146651277661
201684195301326255252342132101124116102144263200202139150-11382554146694379888552460777797880393014111283716192494819.28%3117476.21%9497162630.57%512204725.01%294104028.27%1673110523006461113502
201784165205506136447-311429220440377232-155427300110359215-156321362423782432485111180555558263558248593351614742824214.89%2624084.73%7698136651.10%820158051.90%526117244.88%170298520017211391691
20178438310453333031317422312012221631333042151903311167180-137633053886822118110957276992293689537246191241915103078126.38%2094677.99%18814178345.65%606148340.86%566121646.55%1942131219356381205591
201882244803421473374994115200222026117388419280120121220111484738241297222001451238302911659109402529221056130115222716122.51%54914573.59%251112178462.33%1211197461.35%880141562.19%1895123318526531204603
201882393500422503298205412612000122821181644113230041022118041785038281331232181781052326612211076961243033111553812463238024.77%2495478.31%7833189843.89%734174542.06%616137144.93%1904131519006101144558
2019621002011761-4431000101910-131100100851-4371731480057501684657635201763612632721.88%18477.78%05312343.09%399839.80%4211835.59%12778150509344
Total Saison Régulière50618424202026112321561937219253116940101181411628543082536814801015399941083-893712156365158071218790710625441610355195247522823916330602345869350173938121.91%192141978.19%8050401023649.24%49091051846.67%3707754949.11%11343741711853398574283654
Séries
201640400000322-192020000037-420200000015-15033600030077292123416958146410220.00%7442.86%0166425.00%2510424.04%94918.37%6739128325725
201640400000510-52020000025-32020000035-2058130001409420472341505715702129.52%50100.00%06876.90%189119.78%64613.04%6639129335123
20171697000004754-78620000028208835000001934-151847801270019121335461821891631257421386238862427.91%43881.40%016139840.45%12636134.90%8322437.05%359243411130223105
2018514000001827-9211000001210230300000617-112183452009630154674339521871948426311.54%371267.57%04510742.06%8314955.70%447757.14%10361132457435
2018514000001426-122110000079-230300000717-10214193300526114047444542497933632214.55%11554.55%0188720.69%3412028.33%147418.92%8555158406628
Total Séries3411230000087139-521688000005251118315000003588-53228714423100332426410113453442932913604782425191653219.39%1032971.84%024674333.11%28682534.67%15647033.19%683439961281472218